科学者が脳を模倣する電子回路の作成に成功

physics 2020/04/22
Credit:nature
point
  • 脳機能を模倣する疑似シナプスを生体と同じ電圧で稼働させた
  • 疑似シナプスは金属呼吸細菌から切り取られたタンパク質ナノワイヤーの助けをかりて稼働する
  • 電圧の適正化で脳神経を電子回路に置き換えることも可能となった

近年の急速なバイオエレクトロニクスの発展により、人間の脳を模倣する演算コアの開発が進んでいます。

この演算コアには疑似ニューロンとそれつなぐ疑似シナプスの仕組みが取り入れられており、機械学習を行うことで、従来コンピューターでは不可能だった「人間くさい」複雑な決定が可能になると言われています。

しかし、既存の脳模倣コア(ニューロモーフィックコンピューティング)を稼働させるためには、最低でも1ボルト前後の電圧が必要です。これは人間の脳が必要とする80ミリボルトと比べると、圧倒的に高電圧と言わざるをえません。

脳模倣コアの最終的な目的は、人間の脳をハードウェアレベルにおいて完全に代替することなので、この高すぎる電圧は好ましくありませんでした。

しかし今回、アメリカの研究者によって、脳模倣コアの稼働に必要な電圧を、本物の脳と同じ40~100ミリボルトまで下げることに成功しました。

今回の研究成果により、脳模倣コアは本物の脳の再現に向けて、最後の壁を乗り越えたと言えます。さらに適正電圧の獲得により、損傷したり古くなった脳細胞を置換する「脳置換」も可能となるでしょう。

しかし、いったい何が低電圧化を可能にしたのでしょうか? 意外にも、その鍵を握っていたのは「菌」でした。

疑似シナプスの仕組み

Credit:nature

脳模倣コアの作成において一番の難題は、シナプスの再現です。

シナプスの役割は通常の電子回路のスイッチのオン・オフに似ていますが、その一方で「流れる電流の多さでスイッチの入り具合が変化する」という柔軟な性質を供えています

既存の電子回路では、この性質を再現するのは困難でした。

ですがここ10年あまりの急激な技術進歩により、脳模倣コアでは本物のシナプスのような柔軟な電流調節を再現する疑似シナプス(メモリスタ)を組み込むことに成功しました。

ただし、既存のシナプスを組み込んだ回路を稼働させるには、最低でも1ボルトの電圧が必要とされています。これは本物の脳が発する80ミリボルトと比べると圧倒的に高電圧です。

そこでアメリカのマサチューセッツマスト大学の研究者たちは、必要な電圧を下げるために、より効果的に稼働する疑似シナプスを考案しました。

Credit:ナゾロジー

実現にあたって鍵となったのは、金属呼吸細菌(G. sulfurreducens)が作るタンパク質ナノワイヤーでした。

生物の呼吸の本質は、「体内で生じた余剰電子を捨てること」にあります。酸素呼吸の場合は、体内の電子を酸素に受渡し、二酸化炭素に変換して放出することで成し遂げられます。

同様に金属呼吸細菌は、体内で生じた余剰電子を金属に捨てることで呼吸しているというわけです。

タンパク質ナノワイヤーは、金属呼吸細菌が電子を捨てるために、金属(自然界では鉱石)と自分のからだの一部を接続するために使われています。

往年の電子機器をお持ちのかたならば、アースを思い浮かべるといいかもしれません。

なお、このタンパク質ナノワイヤーでは量子生物学的な驚くべき現象が発生していることが最新の研究で明らかにされていますので、そちらの記事も参考にしてみてください。

Credit:nature

研究者たちは疑似シナプスの間を、この金属呼吸細菌から採取したナノワイヤーで満たしました。

そして疑似シナプスの前後の回線に電圧がかけられると、ナノワイヤーに電子が流れ、周囲に浮遊させた銀イオンを銀に変換し、疑似シナプスの間で銀の塊が成長していきます。

Credit:nature

上の図では、銀の分子が集まりながら、疑似シナプスが接続されていく様子を示しています。

通電させることで水中の銀イオン(Ag+)がタンパク質ナノワイヤーから電子を受け取って、銀の塊を形成し、塊が成長することで回路が接続されます。

そして通電が途絶えると、集積した銀の塊は銀イオンになって水中に溶けだし、接続が絶たれます。

つまり、金属呼吸細菌の持つ自然界最小の「電線」は、銀と銀イオンから電子を授受する役割を通して、生体触媒のような働きをしていたのです。

生物のもつ触媒作用は非常に効率的であり、疑似シナプス稼働に必要な電圧を劇的に減らすことにつながりました。

このことから、今回の研究によって作られた神経接続は、既存の脳模倣コアの非細胞的性質とタンパク質ナノワイヤーからなる細胞的性質の両方をもったハイブリッド脳とも言えるでしょう。

非細胞性の脳をゼロから構築する

Credit:nature

今回の研究により、生体電圧レベルの制御が実現し、損傷した神経を非細胞性の電子回路で置き換えることも可能になりました。

培養した細胞と違い、非細胞性の回路は拒絶反応が起きにくいからです。

さらに、適正な電圧は、置き換える神経を中枢神経へと拡大することも可能にします。

脳は非常に生物学的な組織ですが、神経接続の仕組みさえ模倣できれば、細胞を使わなくても模倣できる可能性があります。

損傷、あるいは古くなった脳細胞を、脳模倣コアからなる電子回路への置き換えも可能となります。

また、最新の研究では、ネズミの損傷した脳を人間の脳細胞を使って置換する研究も成功しています。

同じような暫時的な置き換えにより、最終的に脳を全て電子回路へと脳置換することも可能となるでしょう。

そのときが来る前に「細胞の作る心」と「電子回路が作る心」の違いが何なのかを、考え始めるべきかもしれません。

 

この研究内容の詳細はマサチューセッツ大学のTianda Fu氏らによってまとめられ、4月20日に科学雑誌「nature」に掲載されました。

Bioinspired bio-voltage memristors
https://www.nature.com/articles/s41467-020-15759-y
あわせて読みたい

SHARE

TAG